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Abstract
We construct a representation of the coherent state path integral using the Weyl
symbol of the Hamiltonian operator. This representation is very different
from the usual path integral forms suggested by Klauder and Skagerstam
(1985 Coherent States: Applications in Physics and Mathematical Physics
(Singapore: World Scientific)), which involve the normal or the antinormal
ordering of the Hamiltonian. These different representations, although
equivalent quantum mechanically, lead to different semiclassical limits. We
show that the semiclassical limit of the coherent state propagator in the Weyl
representation involves classical trajectories that are independent of the width
of coherent states. This propagator is also free from the phase corrections found
in Baranger et al (2001 J. Phys. A: Math. Gen. 34 7227) for the two Klauder
forms and provides an explicit connection between the Wigner and the Husimi
representations of the evolution operator.

PACS numbers: 03.65.Db, 03.65.Sq

1. Introduction

The set of coherent states forms a non-orthogonal overcomplete basis. This has important
consequences for the path integral formulation of the propagator. It implies the existence of
several forms of path integrals, all quantum mechanically equivalent, but each leading to a
slightly different semiclassical limit. Klauder and Skagerstam (KS) [1] proposed two basic
forms for the coherent state path integral, whose semiclassical limits were considered in [2]. It
was shown in [2] that these two semiclassical propagators can be written in terms of classical
complex trajectories, each governed by a different classical representation of the Hamiltonian
operator Ĥ : the P representation HP in one case and the Q representation HQ in the other.
We briefly review these representations and their semiclassical limits in section 2. The two
most important characteristics of these semiclassical formulae are, first, that the underlying
classical dynamics depends explicitly on the width of coherent states. Second, the phase
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appearing in these semiclassical formulae is not just the action of the corresponding complex
classical trajectory, but also contains a ‘correction term’ I that comes with different signs in
each formula (see equations (15) and (16)).

In [2] it was also suggested that a semiclassical representation involving directly the
Weyl representation of Ĥ , or the classical Hamiltonian HW, could probably be constructed
and a formula for this representation was conjectured. The first attempt to derive such a
formula was recently presented in [3]. The strategy used there was to build the propagator
out of infinitesimal propagators that alternated between the two KS forms. The resulting
semiclassical dynamics turned out to be governed by (HQ + HP)/2, which coincides with
the Weyl symbol for polynomial Hamiltonians with up to cubic terms in q and p only. The
correction to the action was found to be (IQ − IP)/2, which is also non-zero for general
Hamiltonians. In this paper we construct a new representation of the quantum mechanical
path integral in the coherent state representation that contains precisely HW and derive its
semiclassical limit. The new construction is based on the properties of translation and
reflection operators [4, 5], which form the basis for expressing general operators. While
in the KS path integrals each path contributes a term of the form exp iS/h̄, where S is the
action along the path (computed with either HQ or HP), the exponent in the new form is
rather different and does not immediately resemble an action. Although the terms in this
exponent can be rearranged so as to look similar to the action function, it is only when the
limit of continuous paths is taken that one can really recognize the action as a part of the
exponent.

We show that the semiclassical limit of the coherent state propagator in the Weyl
representation is indeed given by the expression conjectured in [2]; the underlying dynamics
is purely classical (independent of the width of the coherent states) and there is no correction
term to be added to the action. More importantly, the new path integral representation allows
for a direct connection between the coherent state representation of the evolution operator and
its Weyl symbol.

The paper is organized as follows: in section 2 we review the path integral constructions
of Klauder and Skagerstam and their semiclassical approximations. In section 3 we construct
a new path integral representation and in section 4 we derive its semiclassical limit. The two
path integrals of Klauder and Skagerstam are compared with the new form in section 5, where
we also comment on the relevance of these results for numerical calculations. Finally, in
section 6, we discuss the connection between the Weyl symbol of the evolution operator and
the diagonal coherent state propagator.

2. The coherent state propagator and its semiclassical approximations

In this section we define the coherent state propagator and review the construction of the two
path integrals suggested by Klauder and Skagerstam, showing how the symbols HQ and HP

of the operator Ĥ appear in each of them. We also write down the semiclassical limit of these
path integrals to compare with our results in the next section. Our presentation here is strongly
based on [3].

2.1. The propagator

The coherent state |z〉 of a harmonic oscillator of mass m and frequency ω is defined by

|z〉 = e− 1
2 |z|2 ezâ† |0〉, (1)
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with |0〉 the harmonic oscillator ground state and

â† = 1√
2

(
q̂

b
− i

p̂

c

)
, z = 1√

2

(q

b
+ i

p

c

)
. (2)

In the above q̂, p̂ and â† are operators; q and p are real numbers; and z is complex.
The parameters b = (h̄/mω)

1
2 and c = (h̄mω)

1
2 define the length and momentum scales,

respectively, and their product is h̄.
For a time-independent Hamiltonian operator Ĥ , the propagator in the coherent states

representation is the matrix element of the evolution operator between the states |z′〉
and |z′′〉:

K(z′′, z′, T ) = 〈z′′|e− i
h̄
Ĥ T |z′〉. (3)

We restrict ourselves to Hamiltonians that can be expanded in a power series of the creation
and annihilator operators â† and â.

In the construction of a path integral for K, and also in the derivation of the semiclassical
limit of the propagator, the Hamiltonian operator Ĥ is somehow replaced by a classical
Hamiltonian function H(q, p). This ‘replacement’, however, is not uniquely defined and the
ambiguities that exist in the relation between the operator Ĥ and the function H(q, p) also
arise in connection with the overcompleteness of the coherent state basis, as we shall see in
the next subsections.

There are actually many ways to associate a classical function of position and momentum
A(q, p) with a quantum mechanical operator Â [6]. However, three of them are specially
important. The first one, denoted by AQ(q, p) and called the Q representation of the operator
Â, is constructed as follows: one writes Â in terms of the creation and annihilation operators
â† and â in such a way that all the creation operators appear to the left of the annihilation
operators, making each monomial of Â look like cnmâ†nâm. Then we replace â by z and â†

by z�. The inverse of this operation, which associates a quantum operator with a classical
function, is called ‘normal ordering’. In this case one first writes the classical function in
terms of z and z�, with all the z�’s to the left of the z’s, and then replace z by â and z� by â†.

The second possibility, called the P representation of Â, is obtained by a similar procedure,
but this time the monomials of Â are written in the opposite order, such that they look like
cnmânâ†m. Once the operator has been put in this form one replaces again â by z and â† by z�

to obtain AP(q, p). The inverse of this operation is called ‘anti-normal ordering’. Note that
the differences between the two representations come from the commutator of q̂ and p̂, which
is proportional to h̄. Therefore, these differences go to zero as h̄ goes to zero.

There is, finally, a third representation which is the most symmetric of all, and therefore
the most natural. It is given by the Wigner transformation

AW(q, p) =
∫

ds e
i
h̄
ps

〈
q − s

2

∣∣Â∣∣ q +
s

2

〉
. (4)

AW(q, p) is called the Weyl representation of Â [7, 5]. Its inverse transformation consists
in writing the classical function in terms of z and z� considering all possible orderings for
each monomial and making a symmetric average between all possibilities before replacing z

and z� by the corresponding operators. As an illustration of these three representations we
take

Ĥ = −1

2

∂2

∂x2
+

1

2
x2 + x4
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(m = h̄ = 1), for which we obtain

HQ = 1
2 (p2 + x2) + x4 + 1

4 (b2 + b−2) + 3b2x2 + 3b4/4,

HP = 1
2 (p2 + x2) + x4 − 1

4 (b2 + b−2) − 3b2x2 + 3b4/4,

HW = 1
2 (p2 + x2) + x4,

where b is the width of the coherent state. Note the term proportional to x2 that appears with
opposite signs in HQ and HP really modifying the classical dynamics with respect to HW.

2.2. Basic path integrals and their semiclassical approximations

The calculation of the semiclassical propagator in the coherent state representation starting
from path integrals was discussed in detail in [2]. In this section we summarize these previous
results emphasizing the non-uniqueness of the semiclassical limit as a consequence of the
overcompleteness of the coherent state representation. The reader is referred to [2] for details.

In order to write a path integral for K(z′′, T ; z′, 0), the time interval has to be divided into
a large number of slices and, for each slice, an infinitesimal propagator has to be calculated.
As pointed out by Klauder and Skagerstam [1, 8], there are at least two different ways to do
that. Each of these gives rise to a different representation of the path integral. Although they
correspond to identical quantum mechanical quantities, their semiclassical approximations are
different. We review the construction of these two representations below.

The first form of path the integral is constructed by dividing the time interval T into N
parts of size τ and inserting the unit operator

11 =
∫

|z〉dz dz∗

2π i
〈z| (5)

everywhere between adjacent propagation steps. We denote the real and imaginary parts of
z and z∗ by x and y, respectively. In all integrations, dz d z∗/2π i means dx dy/π . After the
insertions, the propagator becomes a 2(N − 1)-fold integral over the whole phase space

K(z′′, t; z′, 0) =
∫ 


N−1∏
j=1

dzj dz∗
j

2π i




N−1∏
j=0

{〈zj+1| e− i
h̄
Ĥ (tj )τ |zj 〉

}
, (6)

with zN = z′′ and z0 = z′. Using the coherent state overlap formula

〈zj+1|zj 〉 = exp

{
−1

2
|zj+1|2 + z�

j+1zj − 1

2
|zj |2

}
(7)

and expanding e−iHτ/h̄ ≈ 1 − iHτ/h̄ we write

〈zj+1|e− i
h̄
Ĥ (tj )τ |zj 〉 = exp

{
1

2
(z�

j+1 − z�
j )zj − 1

2
z�
j+1(zj+1 − zj ) − iτ

h̄
Hj+1,j

}
, (8)

where

Hj+1,j ≡ 〈zj+1|Ĥ (tj )|zj 〉
〈zj+1|zj 〉 ≡ H(z�

j+1, zj ; tj ) (9)

and (1 − iHj+1,j τ/h̄) has been approximated again by e−iHj+1,j τ/h̄. With these manipulations
the first form of the propagator, which we shall call KQ, becomes

KQ(z′′, t; z′, 0) =
∫ {

N−1∏
j=1

dzj dz∗
j

2π i

}

× exp




N−1∑
j=0

[
1

2
(z�

j+1 − z�
j )zj − 1

2
z�
j+1(zj+1 − zj ) − iτ

h̄
Hj+1,j

]
 . (10)
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When the limit N → ∞ and τ → 0 is taken, the above summations turn into integrals.
Also, Hj+1,j turns into the smooth Hamiltonian function H(z, z�) ≡ 〈z|Ĥ |z〉. Using the
properties â|z〉 = z|z〉 and 〈z|â† = 〈z|z�, we see that H can be easily calculated if Ĥ is written
in terms of creation and annihilation operators with all â†’s to the left of the â’s. Therefore, H
is exactly HQ(z, z�), the Q symbol of the Hamiltonian operator [7].

The second form of the path integral starts from the ‘diagonal representation’ of the
Hamiltonian operator, namely

Ĥ =
∫

|z〉h(z�, z)
dz dz∗

2π i
〈z|. (11)

Assuming that Ĥ is either a polynomial in p and q or a converging sequence of such
polynomials, this diagonal representation always exists. The calculation of h is not as direct as
that of H, but it can be shown [7] that h(z�, z) is exactly HP, the P symbol of Ĥ . To facilitate
the comparison between this form of path integral, which we call KP and KQ, it is convenient
to divide the time interval T into N − 1 intervals, rather than N. We write

KP (z′′, T ; z′, 0) = 〈z′′|
N−1∏
j=1

e− iτ
h̄

Ĥ |z′〉 (12)

and, following Klauder and Skagerstam, we write the infinitesimal propagators as

e− i
h̄
Ĥ τ ≈

∫
|zj 〉

(
1 − iτ

h̄
h(z�

j , zj )
) dzj dz∗

j

2π i
〈zj | ≈

∫
|zj 〉 e− iτ

h̄
h(z�

j ,zj )
dzj dz∗

j

2π i
〈zj |. (13)

The complete propagator KP becomes

KP(zN, T ; z0, 0) =
∫ N−1∏

j=1

dzj dz∗
j

2π i
〈zj+1|zj 〉 exp

{
− iτ

h̄
h(z�

j , zj )
}

=
∫ 


N−1∏
j=1

dzj dz∗
j

2π i




× exp




N−1∑
j=0

[
1

2
(z�

j+1 − z�
j )zj − 1

2
z�
j+1(zj+1 − zj ) − iτ

h̄
h(z�

j , zj )

]
 . (14)

Note that while the two arguments of HQ in KQ belong to two adjacent times in the mesh,
the two arguments of HP in KP belong to the same time. Although both forms should give
identical results when computed exactly, the differences between the two are important for
the stationary exponent approximation, resulting in different semiclassical propagators. The
semiclassical evaluation of KQ and KP was presented in detail in [2] (see also [9–11]). Here
we only list the results:

KQ(z′′, t; z′, 0) =
∑

ν

√
i

h̄

∂2SQν

∂u′∂v′′ exp

{
i

h̄
(SQν + IQν) − 1

2
(|z′′|2 + |z′|2)

}
, (15)

KP(z
′′, t; z′, 0) =

∑
ν

√
i

h̄

∂2SPν

∂u′∂v′′ exp

{
i

h̄
(SPν − IPν) − 1

2
(|z′′|2 + |z′|2)

}
, (16)

where

Siν = Siν(v
′′, u′, t) =

∫ t

0
dt ′

[
ih̄

2
(u̇v − v̇u) − Hi(u, v, t ′)

]
− ih̄

2
(u′′v′′ + u′v′) (17)

is the action and

Ii = 1

2

∫ T

0

∂2Hi

∂u∂v
dt (18)
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is a correction to the action. The index i assumes the values Q and P and sum over ν represents
the sum over all ‘contributing’ (complex) classical trajectories satisfying Hamilton’s equations

ih̄u̇ = +
∂Hi

∂v
ih̄v̇ = −∂Hi

∂u
, (19)

with boundary conditions

u(0) = z′ ≡ u′, v(t) = z′′� ≡ v′′. (20)

The factors Ii are an important part of the formulae and they are absolutely necessary to
recover the exact propagator for quadratic Hamiltonians. If one neglects them, even the
harmonic oscillator comes out wrong. For a discussion about contributing and non-contributing
trajectories, see [12, 13].

Finally we remember that the Weyl Hamiltonian can be obtained from Ĥ by completely
symmetrizing the creation and annihilation operators. It turns out to be an exact average
between HQ and HP if Ĥ contains up to cubic monomials in â and â†, but only an approximate
average for the other cases. The semiclassical formula with HQ comes with a correction +IQ

and that with HP comes with a correction of −IP. This suggests a third type of semiclassical
approximation for the propagator, where one uses the Weyl Hamiltonian and no correction
term, since the average of +I1 and −I2 should be approximately zero. This is the Weyl
approximation, which was conjectured in [2]:

KW(z′′, t; z′, 0) =
∑

ν

√
i

h̄

∂2SW

∂u′∂v′′ exp

{
i

h̄
SW − 1

2
(|z′′|2 + |z′|2)

}
, (21)

with SW given by equation (17) with Hi replaced by HW.
Of the three semiclassical approximations presented, the Weyl approximation seems to

be the most natural, since it involves the classical Hamiltonian directly and no corrections to
the action. However, this formula does not follow from the two most natural forms of the path
integral proposed by Klauder and used in this section. In the next section we propose a third
form of the path integral which is constructed directly in terms of HW and whose semiclassical
limit is indeed the formula above. For a direct comparison between these semiclassical
formulae for short propagation times see [14].

3. Coherent state path integrals with the Weyl symbol

The new form of path integral we describe in this section is based on an expansion of the
Hamiltonian in a continuous basis of reflection operators R̂x whose coefficients H(x) are
exactly the Weyl symbol of Ĥ . We first review the algebra of reflection and translation
operators in quantum mechanics [4], following closely the presentation in [5]. We then use
these results to construct the path integral.

3.1. Translation and reflection operators

Consider the family of translation operators

T̂ ξ = e
i
h̄
(pq̂−qp̂) = eipq̂/h̄ e−iqp̂/h̄ e−iqp/2h̄ = e−iqp̂/h̄ eipq̂/h̄ e+iqp/2h̄, (22)

where ξ = (q, p) is a point in phase space. It can be shown that T̂ ξ form a complete basis, in
the sense that any operator Â can be expressed as

Â =
∫

dξ

2πh̄
A(ξ)T̂ ξ . (23)
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The Fourier transform of the operators T̂ ξ forms a complementary family of reflection operators
R̂x which also form a basis:

R̂x = 1

4πh̄

∫
dξ e

i
h̄
(x∧ξ)T̂ ξ , (24)

where x = (Q, P) and x ∧ ξ = Pq − Qp. In terms of these operators we may write

Â =
∫

dx

πh̄
A(x)R̂x = 1

4π2h̄2

∫
dξ dx A(x) e

i
h̄
(x∧ξ)T̂ ξ . (25)

When this expression is inverted to write A(x) in terms of Â, we find precisely the Weyl
representation, as given by equation (4). This is shown in appendix A.

It is convenient to write some of these expressions in terms of â, â†, z and z∗ instead of
q̂, p̂, q and p. We find that

T̂ ξ = e(zâ†−z∗â) = ezâ†
e−z∗â e−|z|2/2, (26)

which we recognize as the displacement operator [15–17] frequently used in quantum optics.
Also

〈zk|T̂ ξ |zk−1〉 = exp(zz∗
k − z∗zk−1 − |z|2/2)〈zk|zk−1〉 (27)

and

〈zk|Â|zk−1〉 = 1

4π2h̄2

∫
dx A(x)〈zk|zk−1〉

×
∫

dξ exp
( i

h̄
(x ∧ ξ)

)
exp(zz∗

k − z∗zk−1 − |z|2/2). (28)

Since the integral over ξ = (q, p) is quadratic, it can be done immediately. Defining

wk = 1√
2

(
Q

b
+ i

P

c

)
(29)

(the index k is added for later convenience), we find

〈zk|Â|zk−1〉 = 2
∫

dwk dw∗
k

2πi
A(wk,w

∗
k )

× exp(−2|wk|2 + 2z∗
kwk + 2zk−1w

∗
k − |zk|2/2 − |zk−1|2/2 − z∗

kzk−1), (30)

where
dwk dw∗

k

2π i
= dQ dP

2πh̄
. (31)

As the notation suggests, this expression will be our starting point to construct the path
integral. When Â is replaced by the infinitesimal propagator e−iĤ τ/h̄ ≈ 1 − iĤ τ/h̄ and a
sequence of these matrix elements are multiplied together, we will find that all the zk’s and
z∗
k’s appear only in quadratic forms and can be integrated over. The resulting path integral will

be written in the new variables w.

3.2. The path integral

We start from

K(z′′, t; z′, 0) =
∫ 


N−1∏
j=1

dzj dz∗
j

2π i




N∏
j=1

{〈zj | e− i
h̄
Ĥ (tj )τ |zj−1〉

}
, (32)
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where zN = z′′, z0 = z′, τ is the time step, Nτ = T and we take N to be even for convenience.
The infinitesimal propagators can be calculated with equation (30) by simply replacing
A(wk,w

∗
k ) by e−iH(xk)τ/h̄ where H(xk) is the Weyl symbol of Ĥ calculated at (Qk, Pk). We

obtain

K(z′′, t; z′, 0) = 2N

∫ 


N∏
j=1

dwj dw∗
j

2π i




∫ 


N−1∏
j=1

dzj dz∗
j

2π i




× exp

{
N∑

k=1

[
− i

h̄
Hkτ − 2|wk|2 + 2z∗

kwk + 2zk − 1w
∗
k − |zk|2

2
− |zk − 1|2

2
− z∗

kzk−1

]}
,

(33)

where Hk = H(wk,w
∗
k ). The integrals over the zj ’s and the z∗

j ’s can be performed exactly.
When this is done we find

K(z′′, t; z′, 0) =
∫ 


N∏

j=1

dwj dw∗
j

π i


 exp

(
φN − |z′|2

2
− |z′′|2

2

)
=

∫
D[w,w∗]

× exp

(
ψ[w,w∗] + 2C[w,w∗]z′′∗ − 2C∗[w,w∗]z′ − |z′|2

2
− |z′′|2

2
+ z′z′′∗

)
,

(34)

where

φN =
N∑

k=1

[−iτHk/h̄ − 2|wk|2 + 2z′′∗wN+1−k(−1)k+1 + 2z′w∗
k (−1)k+1

]

+ 4
N−1∑
k=1

k∑
j=1

w∗
k+1wk+1−j (−1)j+1 + z′z′′∗. (35)

In the second line of (34) we have written the dependence of the propagator on z′ and z′′∗

explicitly and defined

ψN =
N∑

k=1

[−iτHk/h̄ − 2|wk|2] + 4
N−1∑
k=1

k∑
j=1

w∗
k+1wk+1−j (−1)j+1,

CN =
N∑

k=1

wN+1−k(−1)k+1.

(36)

3.3. Alternative form and the limit of continuum

Equations (34) and (35) correspond to the coherent state path integral in the Weyl
representation. It is very different from the previous forms presented in section 2 in two
respects: the measure lacks a factor 2 in the denominator and, more importantly, the exponent
does not resemble an action at all. We shall comment more about this particular form of
the action in section 6, when we compare this result with the path integral for the Weyl
representation of the evolution operator. Although these expressions seem to be the most
practical for actual calculations, we can manipulate the terms in φN to make it look more
familiar and similar to an action function. However, it is only when we take the limit of the
continuum that we really recognize the action as part of the exponent. We shall do these
manipulations now, but we insist that equations (34) and (35) are the direct analogues of
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equations (10) and (14) for the Q and P representations respectively. Although unusual, and
perhaps more complicated, we shall see that, in the semiclassical limit, the Weyl form becomes
the simplest of them all.

We show in appendix B that the quadratic terms in φN can be written as

−
N∑

k=1

2|wk|2 + 4
N−1∑
k=1

k∑
j=1

w∗
k+1wk+1−j (−1)j+1

= 2
N−1∑
k=1,3

[wk(w
∗
k+1 − w∗

k ) − w∗
k+1(wk+1 − wk)]

−4
N−1∑
k=1,3

(wk+1 − wk)

N−2∑
l=k+1,k+3

(w∗
l+2 − w∗

l+1),

(37)

where the sums on the right-hand side go in steps of two. The terms proportional to z′ and z′′∗

can also be rewritten as
N∑

k=1

w∗
k (−1)k+1 = −

N−1∑
k=1,3

(w∗
k+1 − w∗

k )

N∑
k=1

wN+1−k(−1)k+1 =
N−1∑
k=1,3

(wk+1 − wk).

(38)

When these terms are replaced in the exponent we get

φN = 2
N−1∑
k=1,3

[wk(w
∗
k+1 − w∗

k ) − w∗
k+1(wk+1 − wk)] − iτ

h̄

N∑
k=1

Hk

− 4
N−1∑
k=1,3

(wk+1 − wk)

N−2∑
l=k+1,k+3

(w∗
l+2 − w∗

l+1)

− 2z′
N−1∑
k=1,3

(w∗
k+1 − w∗

k ) + 2z′′∗
N−1∑
k=1,3

(wk+1 − wk) + z′z′′∗. (39)

This is the alternative discrete version of φN . Although not much enlightening than the original
form, equation (35), the first line shows a closer resemblance to the usual action function.
More importantly, this expression is ready for the continuum limit. Taking N → ∞, τ → 0
with Nτ = T we obtain

φ = − iτ

h̄

∫ T

0
H dt +

∫ T

0
(wẇ∗ − w∗ẇ) dt −

∫ T

0
ẇ(t)

∫ T

t

ẇ∗(t ′) dt ′ dt

− z′
∫ T

0
ẇ∗ dt + z′′∗

∫ T

0
ẇ dt + z′z′′∗. (40)

Note that the factors of 2 and 4 compensate for the sums in steps of two.
The integrals in the last term on the first line can be rewritten as∫ T

0
ẇ(t)[w∗(T ) − w∗(t)] dt = w∗(T )[w(T ) − w(0)] −

∫ T

0
ẇ(t)w∗(t) dt. (41)

The last term above cancels one of the terms in equation (40). After performing the integrals
on the second line of equation (40), making some simple rearrangements and an integration
by parts, we can write the exponent in the form

φ = i

h̄
S + (z′ − w(0))

[
w∗(0) +

z′′∗ − w∗(T )

2

]
+ (z′′∗ − w∗(T ))

[
w(T ) +

z′ − w(0)

2

]
, (42)
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where S is the (complex) action [2]

S =
∫ T

0

[
ih̄

2
(w∗ẇ − wẇ∗) − H

]
dt − ih̄

2
(w∗(T )w(T ) + w∗(0)w(0)). (43)

Note that the action in the coherent state representation is not just the integral corresponding
to pq̇ − H , but it also includes important boundary terms. Besides, the exponent φ of the
path integral is not just the action but it also includes further boundary terms. We shall see,
however, that the extra terms in equation (42) vanish in the semiclassical limit.

4. Semiclassical limit

The semiclassical limit of the propagator is obtained by performing the integrals over wk and
w∗

k with the stationary phase approximation. Because the exponent φN is not a phase, but a
complex quantity, we use the terminology ‘stationary exponent approximation’.

4.1. The stationary exponent condition

Using equation (35) for N even and l �= 1 even we obtain

∂φN

∂w∗
l

= − iτ

h̄

∂Hl

∂w∗
l

− 2wl − 2z′ + 4[wl−1 − wl−2 + · · · − w2 + w1] ≡ 0

and
∂φN

∂w∗
l+1

= − iτ

h̄

∂Hl+1

∂w∗
l+1

− 2wl+1 + 2z′ + 4[wl − wl−1 + · · · + w2 − w1] ≡ 0.

Adding these two equations we obtain simply

− i

h̄

1

2

[
∂Hl

∂w∗
l

+
∂Hl+1

∂w∗
l+1

]
= wl+1 − wl

τ
. (44)

For l = 1 we get

∂φN

∂w∗
1

= − iτ

h̄

∂H1

∂w∗
1

− 2w1 + 2z′ ≡ 0. (45)

For the derivatives with respect to wl we proceed in the same way. For l odd we get

∂φN

∂wl

= − iτ

h̄

∂Hl

∂wl

− 2w∗
l − 2z′′∗ + 4[w∗

l+1 − w∗
l+2 + · · · − w∗

N−1 + w∗
N ] ≡ 0

and
∂φN

∂wl+1
= − iτ

h̄

∂Hl+1

∂wl+1
− 2w∗

l+1 + 2z′′∗ + 4[w∗
l+2 − w∗

l+1 + · · · + w∗
N−1 − w∗

N ] ≡ 0.

Adding the two equations we obtain

− i

h̄

1

2

[
∂Hl

∂wl

+
∂Hl+1

∂wl+1

]
= −w∗

l+1 − w∗
l

τ
. (46)

Finally for l = N we get

∂φN

∂wN

= − iτ

h̄

∂H1

∂wN

− 2w∗
N + 2z′′∗ ≡ 0. (47)

Taking the continuum limit and using the u and v variables in place of w and w∗,
equations (44), (46), (45) and (47) become

ih̄u̇ = +
∂HW

∂v
, ih̄v̇ = −∂HW

∂u
, (48)
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with boundary conditions

u(0) = z′, v(T ) = z′′�. (49)

The average of the derivatives at consecutive time steps that appear on the left-hand side of
equations (44) and (46) resembles the stationary conditions obtained in [3]. In that case,
however, one of the derivatives involved HP and the other HQ.

4.2. Expansion around the stationary trajectory

Let w0
k and w∗0

k represent the stationary trajectory and w0
k + ξk and w∗0

k + ξ ∗
k a nearby path.

Expanding the exponent up to second order around the stationary trajectory we get

φN = φ0
N + δ2φN + O(3) (50)

(the first-order term is zero) with

δ2φN =
N∑

k=1

{
− iτ

2h̄

[
Akξ

2
k + 2Ckξkξ

∗
k + Bkξ

∗2
k

] − 2ξkξ
∗
k

}
+ 4

N−1∑
k=1

ξ ∗
k+1

k∑
j=1

ξk+1−j (−1)j+1

≡ −1

2
XT �̃NX, (51)

where XT = (ξN , ξ ∗
N, ξN−1, . . . , ξ1, ξ

∗
1 ) and

Ak = ∂2Hk

∂w2
k

, Bk = ∂2Hk

∂w∗2
k

, Ck = ∂2Hk

∂wk∂w∗
k

(52)

are calculated at the stationary trajectory.
When the limit of the continuum is taken, the boundary conditions (49) kill the extra terms

in the exponent φ, equation (42), which becomes simply the action of the complex trajectory.
Therefore the semiclassical propagator becomes

KW(z′, z′′, T ) = exp

(
i

h̄
SW − 1

2
(|z′|2 + |z′′|2)

)
lim

N→∞
2N√

(−1)N det(�̃N)
. (53)

As usual, the calculation of the determinant of the quadratic form is the most lengthy step of
the semiclassical calculation. In this case the calculation is particularly tricky, because of the
double sum in the last term of the first line of equation (51). To avoid losing the focus with
this lengthy algebra here we do the calculation in appendix C. The final result is indeed the
conjectured formula, equation (21), that we repeat here:

KW(z′′, t; z′, 0) =
√

i

h̄

∂2SW

∂u′∂v′′ exp

{
i

h̄
SW − 1

2
(|z′′|2 + |z′|2)

}
. (54)

Of course, if there is more than one stationary trajectory, one should sum over all the
contributing ones.

5. A comparison between the three forms of the path integral

In principle, all discrete forms of path integrals given by equations (10), (14) and (34) are
quantum mechanically equivalent. For fixed N, however, they are not identical and in the
limit N → ∞ there are well-known convergence problems, making the comparison difficult.
In order to illustrate the differences between the three forms we shall study the discrete
propagators for a simple harmonic oscillator. The Hamiltonian operator is

Ĥ = − h̄2

2m

∂2

∂x2
+

mω2x2

2
= h̄ω

(
a†a +

1

2

)
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and, choosing the coherent state width as b = √
h̄/mω, the classical symbols, in the u and v

variables, are

HQ = h̄ω
(
uv + 1

2

)
HP = h̄ω

(
uv − 1

2

)
HW = h̄ωuv.

Using HW in the stationary conditions (44)–(47) we obtain the stationary path

wk = α∗k−1

αk
z′, w∗

k = α∗N−k

αN−k+1
z′′∗,

where

α ≡ 1 + iτω/2.

The calculation of the phase φ0
N at the stationary trajectory is lengthy but involves only simple

geometric sums. Several simplifications occur when all the terms in φ0
N are added together

and the result is

φ0
N =

(
α∗

α

)N

z′z′′∗ − 1

2
(|z′|2 + |z′′|2).

The determinant of the quadratic form is calculated in appendix C and results in (see
equations (C1) and (C6))

det �̃N = 22N i2Nα2N . (55)

Putting everything together we obtain

KW(z′′, z′, T ) = (1 + iτω/2)−Nexp

((
1 − iτω/2

1 + iτω/2

)N

z′z′′∗ − |z′|2/2 − |z′′|2/2

)
, (56)

which clearly converges to the exact propagator as τ → 0. Doing similar calculations for the
Q and P propagators we find

KQ(z′′, z′, T ) = exp(−iωT/2 + (1 − iτω)N z′z′′∗ − |z′|2/2 − |z′′|2/2) (57)

and

KP(z
′′, z′, T ) = (1 + iτω)−N exp

(
iωT/2 +

z′z′′∗

(1 + iτω)N
− |z′|2/2 − |z′′|2/2

)
, (58)

which also converge to the exact result. Note that the overall phase −iωT/2 comes out exact
for KQ even in the discrete form. However, the term multiplying z′z′′∗, which goes to e−iωT as
N → ∞, converges much faster for KW than the corresponding terms in KQ or KP. Moreover,
for any finite value of N, this term has unit modulus in KW, while its modulus is larger than
1 for KQ and smaller than 1 in KP. Just for the sake of comparison let us call this coefficient
µ. Taking ωT = 2π and N = 100 we find µQ ≈ 1.22 + 0.01i, µP ≈ 0.82 + 0.007i and
µW ≈ 0.999998 + 0.002i. This suggests that the new path integral representation should be
better than the two KS forms for numerical evaluations.

6. Connecting the Wigner and the Husimi propagators

In this section we show that the Weyl representation of the evolution operator

U(q, p, T ) =
∫

〈q − s/2| e−iĤT /h̄|q + s/2〉 eips/h̄ ds (59)

can be directly related to the path integral representation derived in section 3. This is an
interesting formal result that was also obtained by Ozorio de Almeida in section 6 of [5]
starting from the opposite direction, i.e. from the path integral representation of U. The result
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provides an explicit connection between these two famous phase space representations of
quantum mechanics. As we shall see, the connection is very simple when written in terms of
path integrals.

We start by rewriting equation (59) as

U(q, p, T ) =
∫

〈q − s/2|z′′〉〈z′′|Û |z′〉〈z′|q + s/2〉eips/h̄ ds
dz′ dz′∗

2π i

dz′′ dz′′∗

2π i

=
∫

D[w,w∗] eψ

∫
ds eips/h̄

∫
dz′ dz′∗

2π i

dz′′ dz′′∗

2π i
〈β|z′′〉〈z′|α〉

× exp

[
−|z′|2

2
− |z′′|2

2
+ z′z′′∗ + 2Cz′′∗ − 2C∗z′

]
, (60)

where we used equations (34) and (36) and defined α = q + s/2 and β = q − s/2 in the
second line. The integrals in z′ and z′′ are quadratic and can be performed analytically. The
integral over z′ is straightforward and gives

U(q, p, T ) = 1

π1/4b1/2

∫
D[w,w∗] eψ

∫
ds eips/h̄

∫
dz′′ dz′′∗

2π i
〈β|z′′〉

× exp

[
−|z′′|2

2
+ 2Cz′′∗ − α2

2b2
− z′′∗ − 2C∗

2
+

α
√

2

b
(z′′∗ − 2C∗)

]
. (61)

It can be seen by inspection that the exponent in the second line above can be written as

π1/4b1/2〈z′′|α + A〉 e−B, (62)

with A = b
√

2(C + C∗) and B = −A2/2b2 − Aα/b2 + 2C∗2 + 2
√

2αC∗/b. When (62) is
substituted into (61) the integral in z′′ produces 〈β|α + A〉 = δ(α − β + A) = δ(s + A). The
delta function takes care of the integral over s and after some simplifications we obtain simply

U(q, p, T ) =
∫

D[w,w∗] exp(ψ + 2Cz∗ − 2C∗z + 2|C|2), (63)

where z = (q/b+ipb/h̄)/
√

2. A comparison with equation (34) shows that the only difference
between the path integrals for U(q, p, T ) and K(z, z, T ) is the extra term 2|C|2, which
promotes the ‘unsmoothing’ of the coherent state propagator. Conversely, the diagonal
coherent state propagator has the extra term −2|C|2 with respect to U, smoothing it out.
The coefficient C can actually be interpreted as the Wigner chord linking the ends of a polygon
in phase space whose sides are centred on (Qk, Pk) defined by wk = (Qk/b + ibPk/h̄)/

√
2.

Similarly, the complete exponent in equation (63) can be identified with the action for the
polygonal path with endpoints centred in (q, p) and whose sides are centred on (Qk, Pk) [5].
Finally, we can calculate explicitly the two terms that involve q and p in (63). Using the
definition of C in equation (36) we find that

2Cz∗ − 2C∗z =
N∑

k=1

2i

h̄
(Qkp − Pkq), (64)

which is the sum of the symplectic areas between Xk = (Qk, Pk) and x = (q, p), and is
independent of the width b.
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Appendix A. Expansion in reflection and translation operators

This appendix follows closely the demonstration in [5]. A comparison between equations (23)
and (25) shows that

A(ξ) = 1

2πh̄

∫
dx A(x) e

i
h̄
x∧ξ (A1)

and, inverting the Fourier transform,

A(x) = 1

2πh̄

∫
dξ A(ξ) e− i

h̄
x∧ξ . (A2)

Using equation (23) again in the coordinate representation we obtain

〈q+|Â|q−〉 =
∫

dξ

2πh̄
A(ξ)〈q+|T̂ ξ |q−〉

=
∫

dq dp

2πh̄
A(q, p)δ(q+ − q− − q) e

i
h̄
p(q−+ q

2 )

=
∫

dp

2πh̄
A(q+ − q−, p) e

i
h̄

q++q−
2 p. (A3)

This Fourier transform can be inverted as follows: we define q ′ = q+ − q−, Q̄ = (q+ + q−)/2,
multiply both sides by e−ip′Q̄/h̄ and integrate over Q̄. The integral over Q̄ on the right-hand
side yields a delta function on p − p′ and we obtain

A(ξ) =
∫

dQ̄〈Q̄ + q/2|Â|Q̄ − q/2〉 e− i
h̄
pQ̄, (A4)

where (q ′, p′) has been changed back to (q, p). Finally we use equation (A2) to get A(x):

A(x) = 1

2πh̄

∫
dq dp dQ̄ e

i
h̄
p(Q−Q̄)− i

h̄
Pq〈Q̄ + q/2|Â|Q̄ − q/2〉

=
∫

dq e− i
h̄

Pq〈Q + q/2|Â|Q − q/2〉, (A5)

which is the same as equation (4).

Appendix B. Proof of equation (37)

First we rewrite, for N even,

4
N−1∑
k=1

k∑
j=1

w∗
k+1wk+1−j (−1)j+1 = 4w∗

2w1 + 4w∗
3[w2 − w1] + 4w∗

4[w3 − (w2 − w1)]

+ 4w∗
5[(w4 − w3) + (w2 − w1)] + 4w∗

6[w5 − (w4 − w3) − (w2 − w1)]
...

+ 4w∗
N [wN−1 − (wN−2 − wN−3) − · · · − (w2 − w1)]

= 4[w∗
2w1 + w∗

4w3 + w∗
6w5 + · · · + w∗

NwN−1] − 4(w2 − w1)[(w
∗
4 − w∗

3)

+ (w∗
6 − w∗

5) + · · · + (w∗
N − w∗

N−1)] − 4(w4 − w3)[(w
∗
6 − w∗

5)

+ (w∗
8 − w∗

7) + · · · + (w∗
N − w∗

N−1)]

...

− 4(wN−2 − wN−3)[w
∗
N − w∗

N−1]

= 4
N−1∑
k=1,3

w∗
k+1wk − 4

N−3∑
k=1,3

(wk+1 − wk)

N−2∑
l=k+1,k+3

(w∗
l+2 − w∗

l+1). (B1)
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The second term is already in the form needed for equation (37). The first term is now modified
as follows: half of it remains unchanged and, to the second half, we add and subtract terms as
in

w∗
k+1wk = w∗

k+2wk+1 − [wk+1(w
∗
k+2 − w∗

k+1) + w∗
k+1(wk+1 − w∗

k )], (B2)

for k = 1, 3, . . . , N − 3 only. We obtain

4
N−1∑
k=1,3

w∗
k+1wk = 2

N−1∑
k=1,3

w∗
k+1wk + 2

N−3∑
k=1,3

w∗
k+2wk+1

− 2
N−3∑
k=1,3

[wk+1(w
∗
k+2 − w∗

k+1) + w∗
k+1(wk+1 − w∗

k )] + 2w∗
NwN−1. (B3)

We finally add −2
∑N

k=1 w∗
kwk . The part of this sum containing odd k’s goes together with

the first sum above. The even k’s up to N − 2 go with the second sum. We get

4
N−1∑
k=1,3

w∗
k+1wk − 2

N∑
k=1

w∗
kwk = 2

N−1∑
k=1,3

wk(w
∗
k+1 − w∗

k )

+ 2
N−3∑
k=1,3

wk+1(w
∗
k+2 − w∗

k+1) − 2
N−3∑
k=1,3

[wk+1(w
∗
k+2 − w∗

k+1)

+ w∗
k+1(wk+1 − wk)] − 2w∗

N(wN − wN−1). (B4)

The two terms in the second line cancel each other. After incorporating the last term into the
sum we get

4
N−1∑
k=1,3

w∗
k+1wk − 2

N∑
k=1

w∗
kwk = 2

N−1∑
k=1,3

[wk(w
∗
k+1 − w∗

k ) − w∗
k+1(wk+1 − wk)]. (B5)

Appendix C. Calculation of the determinant

The quadratic form in equation (53) is defined by the matrix


iτAN/h̄ iτCN/h̄ + 2 0 0 0 0 0 · · ·
iτCN/h̄ + 2 iτBN/h̄ −4 0 4 0 −4 · · ·

0 −4 iτAN−1/h̄ iτCN−1/h̄ + 2 0 0 0 · · ·
0 0 iτCN−1/h̄ + 2 iτBN−1h̄ −4 0 4 · · ·
0 4 0 −4 · · ·
0 0 0 0 · · ·
...

...
...

...
...

...

0 0

−4 0

· · · −4 iτA1/h̄ iτC1/h̄ + 2

· · · 0 iτC1/h̄ + 2 iτB1/h̄




,
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whose determinant, det �̃N , we seek. To simplify the notation we will drop the det symbol in
this appendix and use simply �̃N for det �̃N . It is useful to factor 2i out of each element and
call the new determinant �N . Of course,

�̃N = 22N i2N�N. (C1)

This cancels both the 2N and the sign (−1)N in equation (53), leaving only �N . Next we do
the following sequence of operations that do not change the value of the determinant:
column 2 → column 2 + column 4
column 4 → column 4 + column 6
...

column N − 2 → column N − 2 + column N − 4
line 2 → line 2 + line 4
line 4 → line 4 + line 6
...

line N − 2 → line N − 2 + line N − 4.
This puts the matrix in the block tri-diagonal form:


τAN

2h̄
τCN

2h̄ − i 0 0 0 0 0 · · ·
τCN

2h̄ − i τ(BN +BN−1)

2h̄
τCN−1

2h̄ + i τBN−1

2h̄ 0 0 0 · · ·
0 τCN−1

2h̄ + i τAN−1

2h̄
τCN−1

2h̄ − i 0 0 0 · · ·
0 τBN−1

2h̄
τCN−1

2h̄ − i τ(BN−1+BN−2)

2h̄
τCN−2

2h̄ + i τBN−2

2h̄ 0 · · ·
0 0 0 τCN−2

2h̄ + i · · ·
0 0 0 τBN−2

2h̄ · · ·
...

...
...

...
...

...

0 0
τC1
2h̄ + i τB1

2h̄

· · · τC1
2h̄ + i τA1

2h̄
τC1
2h̄ − i

· · · τB1
2h̄

τC1
2h̄ − i τB1

2h̄




.

We can now compute the determinant using Laplace’s method. Let �N be the determinant
obtained from the matrix above by removing the first line and the first column. The two
determinants �N and �N satisfy the following recursion relation:

�N = τAN

2h̄
�N −

(
τCN

2h̄
− i

)2

�N−1

�N = τ(BN + BN−1)

2h̄
�N−1 −

(
τCN−1

2h̄
+ i

)2

�N−1 +

(
τ 2C2

N−1

4h̄2 + 1

)

× τBN−1

2h̄
�N−2 +

τBN−1

2h̄

[
1 +

τ 2

4h̄2

(
C2

N−1 − AN−1BN−1
)]

�N−2. (C2)

Keeping only terms of first order in τ and taking the limit τ → 0 we find

�N − �N−1

τ
= AN

2h̄
�N + i

CN

h̄
�N−1 + O(τ 2)

�N − �N−1

τ
= (BN + BN−1)

2h̄
�N−1 − i

CN−1

h̄
�N−1 +

BN−1

h̄
�N−2 + O(τ 2)

(C3)
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or

�̇ = A

2h̄
� + i

C

h̄
� �̇ = 2B

h̄
� − i

C

h̄
�, (C4)

with the initial conditions �(0) = 1 and �(0) = 0.
Note that in the case of a harmonic oscillator Hk = h̄ωwkw

∗
k and, therefore, Ak = Bk = 0

and Ck = h̄ω. In this case equations (C2) can be solved exactly, without the need to take the
continuum limit. We find simply

�N = −
(

τCN

2h̄
− i

)2

�N−1 =
(

1 +
iωτ

2

)2
�N−1, (C5)

which can be iterated to give

�N =
(

1 +
iωτ

2

)2N

. (C6)

To solve equations (C4) in the general case we need a last change of variables � ≡ 2i�.
In the new variable we get

�̇ = i
A

h̄
� + i

C

h̄
� �̇ = −i

B

h̄
� − i

C

h̄
�, (C7)

with �(0) = 2i and �(0) = 0. Identifying � with u and � with v, we recognize these equations
immediately as the equations of motion (48) linearized around the stationary trajectory. The
solution we seek, �(T ) = �(T )/2i, can be obtained with the help of the relations

−ih̄u′′ = ∂S

∂v′′ −ih̄v′ = ∂S

∂u′ , (C8)

where we use a single prime for quantities calculated at t = 0 and a double prime when t = T .
A variation in the second of these equations leads to

−ih̄δv′ = ∂2S

∂u′2 δu′ +
∂2S

∂u′∂v′′ δv
′′. (C9)

Using δu′ = �(0) = 0, δv′′ = �(T ) and δv′ = �(0) = 2i we get

�(T ) = 2i(−ih̄)

(
∂2S

∂u′∂v′′

)−1

(C10)

and

� =
(

i

h̄

∂2S

∂u′∂v′′

)−1

. (C11)
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